Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Sathyamangla Prasad Laboratory

❮Cardiovascular & Metabolic Sciences Sathyamangla Prasad Laboratory
  • Sathyamangla Prasad Laboratory
  • Principal Investigator
  • Research
  • Our Team
  • Publications
  • Careers
  • Research News

Principal Investigator

Sathyamangla Prasad Headshot

Sathyamangla Prasad, PhD

Staff
Email: [email protected]
Location: Cleveland Clinic Main Campus

Research


Biography


Education & Professional Highlights

"CIMER Trained Mentor" indicates the principal investigator has completed mentorship training based on curriculum from the Center for the Improvement of Mentored Experiences in Research, aimed at advancing mentoring relationships and promoting cultural change in research.

Research

Research

Beta-adrenergic receptors (beta-ARs) belong to a family of seven transmembrane receptors, also known as the G-protein coupled receptors (GPCRs), that form the interface between the sympathetic nervous system and the cardiovascular system. Beta-ARs are one of the most powerful regulators of cardiac function that are chronically desensitized and downregulated in conditions of heart failure, in part, due to increased phosphorylation of beta-ARs by beta-adrenergic receptor kinase 1 (beta-ARK1). Beta-ARK1 forms a cytosolic complex with phosphoinositide 3-kinase (PI3K) and targets PI3K to the receptor complex following agonist stimulation. Beta-ARK1 targeted PI3K activity at the receptor complex is required for beta-AR internalizaton, as expression of inactive PI3K attenuates receptor internalization. Importantly, cardiac-specific overexpression of inactive PI3K ameliorates cardiac dysfunction in mouse models of heart failure by blocking the receptor of internalization, which seems to result in the preservation of beta-AR function. The underlying mechanism by which preservation of beta-AR function occurs is currently unknown. Identifying the mechanism by which PI3K regulates these protein(s) involved in the preservation of beta-AR function would allow us to develop novel therapeutic interventions for heart failure, or alternatively, could complement the current treatments. We are using a combination of proteomics, transgenic mouse models, and cell culture systems to comprehensively investigate and elucidate the underlying molecular mechanism.

Our Team

Our Team

Publications

Selected Publications

  1. Mohan, M. L., Jha, B.K., Gupta, M.K., Vasudevan, N.T., Martelli, E.E., Mosinski, J.D., Naga Prasad, S.V.  (2013).  Phosphoinositide 3-Kinase g inhibits cardiac GSK-3 Independent of Akt.  Science Signaling 6(259):ra4 (Cover page article).
  2. Mohan, M.L., Vasudevan, N.T., Gupta, M. K., Martelli, E.E. and Naga Prasad, S.V. (2012). G-protein coupled receptor resensitization – appreciating the balancing act of receptor function. Current Molecular Pharmacology, 5: 317-401.
  3. Vasudevan, N.T., Mohan, M.L., Goswami, S.K. and Naga Prasad, S.V. (2011).  Regulation of b- Adrenergic receptor function:  An emphasis on receptor resensitization.  Cell Cycle, 10 (21): 3684-3691.
  4. Vasudevan, N.T., Mohan, M.L., Gupta, M.K., Hussain, A. and Naga Prasad, S.V. (2011).  Inhibition of protein phosphatase 2A activity by PI3Kg regulates beta-adrenergic receptor function.  Mol. Cell, 41 (6): 636-648.

Careers

Careers

Training at Lerner Research Institute

Our education and training programs offer hands-on experience at one of the nationʼs top hospitals. Travel, publish in high impact journals and collaborate with investigators to solve real-world biomedical research questions.

Learn More

Research News

Research News

...
Heart Month 2025: Questions researchers are asking to improve heart health

Recent cardiovascular research at Cleveland Clinic examined topics such as the gut microbiome connection to the heart, COVID-19’s impact on cardiac event risk and improving cardiac imaging.



...
How to save a failing heart: internal investment shapes new drug development approach

Long-term collaborations created a new drug development approach to heart failure.



...
Even temporary oxygen shortage remodels the heart, increasing stroke risk, new study shows

A Cleveland Clinic study recently published in Circulation Research shows how hypoxia desensitizes receptors in the heart.



Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute