Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

David Van Wagoner Laboratory

❮Cardiovascular & Metabolic Sciences David Van Wagoner Laboratory
  • David Van Wagoner Laboratory
  • Principal Investigator
  • Research
  • Our Team
  • Publications
  • Careers
  • Research News

Principal Investigator

David Van Wagoner Headshot

David Van Wagoner, PhD

Staff
Email: [email protected]
Location: Cleveland Clinic Main Campus

Research

Atrial fibrillation (AF) is a common age related arrhythmia that can cause shortness of breath, an irregular heart beat, stroke and heart failure.  There are approximately 3 million Americans with AF at present, and the number affected is expected to increase to 12-15 million by 2050.

While not immediately life-threatening, AF is a significant medical and economic burden. With the expected rise in AF prevalence due to the aging of the population, efforts to slow the increase in AF are critically important.

Studies in our group are focused on determining the functional pathways by which genetic variations (single nucleotide polymorphisms, SNPs) lead to increased risk of AF. We use state of the art tools and techniques to characterize how AF-related SNPs affect the expression of genes in human atrial tissues and in relevant preclinical studies. 

We seek to identify the signaling pathways affected by these genes, in an effort to identify novel targets for pharmacologic intervention that can help to slow the progression of AF and/or decrease its burden. 


Biography


Education & Professional Highlights

Research

Research

Atrial fibrillation (AF), an age-related cardiac arrhythmia, increases risk of stroke and death. AF can occur in the absence of structural heart disease, but is often associated with CAD, hypertension, and heart failure. Systemic inflammatory markers are elevated in AF patients, and tend to be more elevated in those with persistent than with paroxysmal AF. Inflammatory mechanisms promote atrial remodeling that increases AF persistence and risk of morbidity.

To evaluate AF mechanisms, we study the cellular, biochemical and histologic properties of atrial tissues from surgical patients and from experimental animal models. We study the expression and function of ion channels and other proteins that underlie atrial electrical activity, and evaluate the signaling pathways and genes that are altered in AF. As AF is a highly heritable but complex disease, expression array studies are combined with DNA SNP arrays and DNA/RNA sequencing to assess the impact of genetic variation on mRNA and protein expression.  Imaging techniques are used to explore the distribution of inflammatory mediators, inflammatory cells, markers of oxidant stress, and the links to altered atrial architecture.  Animal models are used to explore the impact of high rate electrical activity and inflammation.

The combination of approaches will help us to identify and evaluate novel pathways that promote AF and which may be targeted for intervention, in an effort to decrease its incidence and clinical impact.

 

Our Team

Our Team

Publications

Selected Publications

  1. K Kusunose, Y Zhang, TN Mazgalev, DR Van Wagoner, JD Thomas, ZB Popovic.  Impact of Vagal Nerve Stimulation on Left Atrial Structure and Function in a Canine High-Rate Pacing Model. Circ. Heart Fail., 2014. PMID:24397925
  2. N. Rozmaritsa, T. Christ, D. R. Van Wagoner, H. Haase, J. P. Stasch, K. Matschke, and U. Ravens. Attenuated response of ICa,L to nitric oxide in atrial fibrillation. Cardiovasc Res, 2014. PMID:24336332
  3. F. Mayyas, K. H. Alzoubi, and D. R. Van Wagoner. Impact of aldosterone antagonists on the substrate for atrial fibrillation: Aldosterone promotes oxidative stress and atrial structural/electrical remodeling. Int.J Cardiol, 15;168:5135-42, 2013. PMID:23993726
  4. N. Tan, M. K. Chung, J. D. Smith, J. Hsu, D. Serre, D. W. Newton, L. Castel, E. Soltesz, G. Pettersson, A. M. Gillinov, D. R. Van Wagoner, and J. Barnard. Weighted gene coexpression network analysis of human left atrial tissue identifies gene modules associated with atrial fibrillation. Circ Cardiovasc Genet 6:362-371, 2013. PMID:23863953
  5. Ellinor, PT et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 2012; 44:670-675. PMID:22544366
  6. M. Harada, X. Luo, X. Y. Qi, A. Tadevosyan, A. Maguy, B. Ordog, J. Ledoux, T. Kato, P. Naud, N. Voigt, Y. Shi, K. Kamiya, T. Murohara, I. Kodama, J. C. Tardif, U. Schotten, D. R. Van Wagoner, D. Dobrev, and S. Nattel. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circ. 126 (17):2051-2064, 2012. PMID:22992321
  7. F. Mayyas, S. Sakurai, R. Ram, J. Rennison, E.S. Hwang, L. Castel, B. Lovano, M.L. Brennan, D. Bibus, B. Lands, J. Barnard, M.K. Chung, and D.R. Van Wagoner. Dietary ω3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model . Cardiovasc Res. 89 (4):852-861, 2011. PMID:21123218
  8. F. Mayyas, M. Niebauer, A. Zurick, J. Barnard, A.M. Gillinov, M.K. Chung, and D.R. Van Wagoner. Association of left atrial endothelin-1 with atrial rhythm, size and fibrosis in patients with structural heart disease. Circ.Arrhythm.Electrophysiol. 3 (4):369-379, 2010. PMID:20495015
  9. Y. Zhang, Z.B. Popovic, S. Bibevski, I. Fakhry, D.A. Sica, D.R. Van Wagoner, and T.N. Mazgalev. Chronic Vagus Nerve Stimulation Improves Autonomic Control and Attenuates Systemic Inflammation and Heart Failure Progression in a Canine High-Rate Pacing Model. Circ Heart Fail 2 (6):692-699, 2009. PMID:19919995
  10. C.A. Carnes, P.M. Janssen, M.L. Ruehr, H. Nakayama, T. Nakayama, H. Haase, J.A. Bauer, M.K. Chung, I.M. Fearon, A.M. Gillinov, R.L. Hamlin, and D.R. Van Wagoner. Atrial glutathione content, calcium current and contractility. J Biol.Chem. 282 (38):28063-28073, 2007. PMID:17656369

Careers

Careers

Training at Lerner Research Institute

Our education and training programs offer hands-on experience at one of the nationʼs top hospitals. Travel, publish in high impact journals and collaborate with investigators to solve real-world biomedical research questions.

Learn More

Research News

Research News

...
Heart Month 2025: Questions researchers are asking to improve heart health

Recent cardiovascular research at Cleveland Clinic examined topics such as the gut microbiome connection to the heart, COVID-19’s impact on cardiac event risk and improving cardiac imaging.



...
Experts look to the future of how to prevent atrial fibrillation

Two leading atrial fibrillation researchers with Cleveland Clinic’s TRIM-AF trial shared initial results about metformin’s effects on AF, and what’s next for research.



...
New LRI Co-Laboratories Announced

The internally funded award promotes new cross-disciplinary collaborations for different perspectives into common topics, diseases and conditions.



...
AHA Awards Cleveland Clinic $3.7 Million for Atrial Fibrillation Research

The four-year, competitive award will support three synergistic projects aimed at improving outcomes for patients with atrial fibrillation (AFib)



Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute