Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News Machine Learning Model Uses Clinical and Genomic Data to Predict Immunotherapy Effectiveness

11/02/2021

Machine Learning Model Uses Clinical and Genomic Data to Predict Immunotherapy Effectiveness

With further validation, the tool developed by Dr. Chan may help oncologists better identify patients most likely to benefit from immune checkpoint blockade therapy.

A new machine learning model developed by Timothy Chan, MD, PhD, and colleagues accurately predicts whether immune checkpoint blockade (ICB), a growing class of immunotherapy drugs, will be effective in patients diagnosed with a wide variety of cancers.

The forecasting tool assesses multiple patient-specific biological and clinical factors to predict the degree of response to immune checkpoint inhibitors and survival outcomes. It markedly outperforms individual biomarkers or other combinations of variables developed so far, according to findings published in Nature Biotechnology.

With further validation, the tool may help oncologists better identify patients most likely to benefit from ICB. Discerning, prior to treatment, patients for whom ICB would be ineffective could reduce unnecessary expense and exposure to potential side effects. It could also indicate the need to pursue alternate treatment strategies, such as combination therapies.

“It’s important to know which treatment modalities patients are most suited for,” said Dr. Chan, director of Cleveland Clinic’s Center for Immunotherapy & Precision Immuno-Oncology. “Our model provides a more comprehensive understanding of the diversity of responses among patients to immune checkpoint blockade. It’s the first to assemble such a large-scale set of clinical and genomic variables that have predictive value for immunotherapy across numerous cancer types.”

These latest findings build on earlier work from Dr. Chan, who discovered that patients with high tumor mutation burden and DNA repair deficiencies respond well to immune checkpoint therapy. These findings have been validated by clinical trials and the FDA approved as the first tumor type-agnostic approvals for any cancer therapy.

The complexities of immunotherapy response

Immune checkpoints are proteins on specific immune cells (T cells) that when activated, or “turned on,” prevent immune responses from being too strong and destroying healthy cells. Some cancer cells are able to hijack checkpoint signaling in order to disguise themselves and avoid being targeted by a patient’s immune system. Checkpoint inhibitors are a class of immunotherapy drugs that prevent cancer cells from activating these checkpoints.

However, ICB is not effective in all cancer types. Even in cancers responsive to ICB, half or more of all patients treated with ICB do not derive clinical benefit. Previous research has identified some biomarkers and genomic features associated with ICB efficacy, but no single factor can be considered an optimal predictor of treatment outcomes.

Performance strength of machine learning forecasting tool

In this study, Dr. Chan and his colleagues developed their model using a dataset containing clinical, tumor and genetic sequencing information from nearly 1,500 patients with 16 different cancer types who were treated with two different types of immune checkpoint inhibitors (specifically PD-1/PD-LI inhibitors and CTLA-4 blockade) or a combination of both. They then applied an algorithm that incorporated many genetic, molecular, clinical and demographic variables, some of which have been shown to be associated with ICB response.

Interestingly, the researchers found that the variable with the greatest influence on ICB response is tumor mutational burden (the frequency of certain mutations within a tumor’s genes), followed closely by a patient’s chemotherapy history. Levels of three blood markers—hemoglobin, platelets and albumin—also had strong predictive value, not only for forecasting patients’ overall survival, but also the actual radiographic response to ICB treatment.

“How these variables all work together is really the key here,” said Dr. Chan. “This model shows that, rather than a single predictive biomarker, we’re headed toward a multifactor nomogram for clinical use.”

The team’s fully integrated model proved to be highly accurate, significantly outperforming two other forecasting tools, including tumor mutational burden, which the FDA approved in 2020 as a biomarker to predict anti-PD-1 ICB efficacy in solid tumors.

“The model works well, despite what type of cancer is being assessed, which shows that these commonalities are what’s important,” Dr. Chan explain. “These are primary factors that affect ICB response. The factors may be weighted a little bit differently from cancer to cancer, but it's almost like a common language for response prediction.”

Taken together, the positive results support moving forward to test the model in a clinical trial with a large, diverse cohort of cancer patients, which would provide a more accurate assessment of its performance in a real-world setting.

The study was funded in part by the National Cancer Institute (part of the National Institutes of Health) and Brian and Diana Taussig.

News Category
news
Related News
Department of Defense Awards $2.4M for Bladder Cancer Immunotherapy ResearchVISTA directly blocks T cells from functioning in immunotherapyResearch reveals a process tumors use to induce immune suppressor cells and evade immunotherapy

Research areas

Immunotherapy & Precision Immuno-Oncology

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute