Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News New research highlights unprecedented targeted approach to treating triple-negative breast cancer

01/15/2024

New research highlights unprecedented targeted approach to treating triple-negative breast cancer

A peptide drug candidate based on a Cleveland Clinic discovery disrupted cancer growth and self-renewal.

Breast cancer cells stained with six primary antibodies to show areas of tumor in contrast to the supportive tissue (or stroma) and the tumor microenvironment (National Cancer Institute/Comprehensive Cancer Center of Wake Forest Univ.)

Cleveland Clinic researchers have successfully developed a therapeutic peptide that blocks aggressive cancer cells from multiplying rapidly. The results highlight a new strategy for developing targeted treatments for triple-negative breast cancer, which currently has no approved options.

Targeted drugs attack cancer cell functions directly, offering a more precise approach to complement broader treatments like chemotherapy. A research team led by Ofer Reizes, PhD, and Justin Lathia, PhD, designed a peptide therapeutic that disrupts the molecular processes behind aggressive cancer growth when delivered into cells.

The drug stopped cancer growth and induced tumor cell death, and only affected cancerous cells in preclinical work. The study was highlighted in the January issue of Molecular Cancer Therapeutics. 

"It's devastating that we currently have such limited options to help people with triple-negative breast cancer," says Dr. Reizes, the Laura J. Fogarty Endowed Chair for Uterine Cancer Research. "We want our results to offer hope for these patients and their families and serve as a starting point to get more treatments into the development pipeline." 

Peptides are short proteins made up of amino acids that are the "building blocks" of larger proteins. Natural and artificially synthesized proteins are commonly used to treat disease. Some peptides are used to supplement existing proteins in the body, like insulin in people with diabetes.

The peptide in development, based on a 2018 Cleveland Clinic discovery, serves as a proof-of-concept for this type of drug for triple-negative breast cancer.

Because triple-negative breast cancer cells lack certain receptors, drugs designed to treat other subtypes of breast cancer won't work. There are currently no targeted drugs approved for triple-negative breast cancer, which makes up 15% of breast cancer cases. To develop new drugs, investigators needed to identify new, effective targets.

A previous joint postdoctoral fellow with Dr. Reizes and Dr. Lathia's team found Cx26, a type of protein called a connexin, forms a molecular complex in triple-negative breast cancer cells that makes them more likely to recur or spread through the body. Investigators worked to find a way to disrupt that complex, which would limit the cancerous properties of the cells.

First authors Erin Mulkearns-Hubert, PhD, and Emily Esakov Rhoades, PhD, developed a peptide therapeutic, supported by a Department of Defense grant. The peptide's sequence is the same as the component of Cx26 necessary for the complex to form. The goal is to saturate the system with the peptide and interrupt the ability of the full-length proteins to bind, says Dr. Mulkearns-Hubert, a research associate in the Lathia lab.

"The peptide's design was actually relatively straightforward and worked beautifully, slowing tumor growth in preclinical models," she says. "Triple-negative breast cancer remains an incredibly difficult tumor type to treat, so developing and verifying strategies like this peptide's design is critical to moving forward."

Researchers observed that the drug prevented cancer stem cells in a dish from self-renewing, a characteristic of aggressive cancer cells that supports treatment resistance.

The team is now working with Cleveland Clinic Innovations to develop the drug and explore potential for clinical trials. 

Featured Experts
Ofer Reizes Headshot
Ofer
Reizes, PhD
Justin Lathia Headshot
Justin
Lathia, PhD
News Category
news
Related News
Establishing the Cleveland Clinic Breast Cancer Center of ExcellenceBreast Microbiome-Immune Interactions May Influence Breast CancerStudy on breast cancer regulators finds potential strategies to reduce severity, improve treatment options

Research areas

Cardiovascular & Metabolic Sciences

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute