Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News VISTA directly blocks T cells from functioning in immunotherapy

05/17/2024

VISTA directly blocks T cells from functioning in immunotherapy

The protein VISTA combines with a newly discovered inhibitory receptor LRIG1 to directly block our T cells from working during immunotherapy.

illustration of two different proteins (blue and red) on two different cells interacting with each other

Pictured above: an illustration of two different proteins (blue and red) on two different cells interacting with each other. This is an example of one of the ways VISTA and LRIG1 can interact between immune and tumor cells.

A team of scientists and physicians have discovered that the immune checkpoint protein VISTA can directly turn off tumor-fighting T-cells during immunotherapy and resist treatment.

The study published in Science Immunology explains that VISTA can bind to a protein called LRIG1 in T cells, previously thought to only promote bone and fat development. The researchers found when VISTA binds to LRIG1, LRIG1 sends signals that suppress T cell replication, survival and function. This interaction can happen between molecules on tumor cells and on T cells, molecules on healthy cells and T cells and even between molecules on the same T cell. Their preclinical work suggests that blocking LRIG1 function can halt tumor growth in many cancers. In human melanoma and endometrial cancer, LRIG1 expression in tumor-associated T cells was correlated with resistance to immunotherapy.

VISTA modulates the immune responses of healthy cells to keep them from attacking our own bodies, protecting us from autoimmune issues. However, studies from Li Lily Wang, PhD's group and others have shown that during immunotherapy, VISTA impairs immune activation and prevents T cells from attacking cancer cells. Pharmeceutical companies have tried to make therapeutics to block VISTA from working during immunotherapy. Success has been limited, because the field still does not know exactly how VISTA works. 

The findings from this study follow another discovery from the laboratory of Dr. Wang, Translational Hematology and Oncology, that showed VISTA indirectly suppresses our immune systems by promoting cells called myeloid-derived suppressor cells (MDSCs) that are well known to block T-cell function. 

"Our two discoveries combined create a paradigm that explains how VISTA can act as a 'super villain' that uses many different weapons to impair antitumor responses during cancer treatments," says Dr. Wang. "This is an insight that drug developers need to consider if they want to boost treatment response rates to their full potential." 

Immunotherapies and immune checkpoint therapies were a huge breakthrough in cancer treatments, providing hope for individuals affected by previously incurable cancers. But with response rates of only 20% - 30% and high recurrence rates, Dr. Wang says there is still much room to improve.

"Studying the molecular aspect of how LRIG1 functions as VISTA's receptor on T cells can provide insights on how to successfully block VISTA and improve the clinical outcomes of the patients who don't respond to existing immune therapies" says lead first author Hieu Minh Ta, PhD. 

This project was a collaboration between labs led by Dr. Wang and Timothy Chan, MD, PhD, Chair of the Center for Immunotherapy and Precision Immuno-Oncology, Director of the Global Center for Immunotherapy and Sheikha Fatima bint Mubarak Endowed Chair in Immunotherapy. The paper has four co-first authors: Wang Lab postdoctoral fellows Dr. Ta and Dia Roy, PhD; Wang Lab research associate Keman Zhang, PhD; and Chan Lab project staff Tyler Alban, PhD. 

The scientists worked closely with physicians including surgical oncologist Brian Gastman, MD, and Case Western Reserve University cancer pathologist Stefanie Avril, MD. Drs. Gastman and Avril provided the research team with melanoma and endometrial samples for studying the expression of LRIG1.

The results were striking. Patients who had been more resistant to immunotherapy had higher levels of LRIG1 in their tumor-fighting T cells.

"Our findings in human cancer samples inform and support the decision to go after LRIG1 as a potential drug target for new immune checkpoint therapies," says Dr. Roy.

The Wang Lab is now collaborating with many additional clinicians across the Cleveland Clinic enterprise to learn more about how the VISTA/LRIG1 axis works in regulating immune responses against different cancer types including lung cancer and breast cancer. They expect that combining VISTA-specific inhibitors with existing immunotherapies may reduce resistance and recurrence and improve cancer patient survival.

Featured Experts
Li Lily Wang Headshot
Li Lily
Wang, PhD
News Category
Related News
Department of Defense Awards $2.4M for Bladder Cancer Immunotherapy ResearchMachine Learning Model Uses Clinical and Genomic Data to Predict Immunotherapy EffectivenessResearch reveals a process tumors use to induce immune suppressor cells and evade immunotherapy

Research areas

Translational Hematology & Oncology ResearchImmunotherapy & Precision Immuno-Oncology

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute