Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News International data analysis shares novel colorectal cancer findings from hundreds of studies

12/20/2022

International data analysis shares novel colorectal cancer findings from hundreds of studies

Sharing genomic data for more than 100,000 colorectal cancer cases helps researchers discover 155 high-confidence genes linked to disease risk.

An analysis of 100,204 colorectal cancer cases and 154,587 healthy controls published in Nature Genetics uncovered hundreds of signals that may serve as new treatment and prevention targets.

This study is twice as large as previous genome-wide association studies, according to the paper. The collaboration included researchers affiliated with hundreds of studies and institutions across Europe, North America and Asia, including Stephanie Schmit, PhD, MPH, Vice Chair of the Genomic Medicine Institute. Genome-wide association studies on this scale help researchers identify genes associated with colorectal cancer and also the biological pathways affected by those genes. 

“This is a major stride in understanding the complexity of genetic susceptibility to colorectal cancer,” says Dr. Schmit, who first started working on part of this effort during her PhD training about a decade ago. “The data uncovered some pathways that could hold potential for prevention and treatment of the disease, and provide continued reinforcement of exploring mechanisms outside of the colon, such as the immune system.”

Dr. Schmit was among the group sharing first authorship on this study, representing the Colorectal Transdisciplinary Study (CORECT) funded by National Institutes of Health grant U19CA148107.

Colorectal cancer develops from growths, known as polyps, in the inner lining of the colon. The disease affects more than 1.9 million people worldwide annually. Though some rare mutations passed through families are associated with a very high risk of colorectal cancer, most of the genetic variants contributing to colorectal cancer are common in the population and each confer a very small increased risk on their own. Combined with environmental and lifestyle factors and cancer screening behaviors, genetics are one important piece of the puzzle for this complex disease.

Researchers compared genomic data from people with and without colorectal cancer to identify genetic associations with the disease. The study identified 250 independent risk associations, 50 of which were previously undiscovered, through analyzing genomic, transcriptomic and methylomic data. The analyses also found 155 high-confidence effector genes, which encode molecules that affect biological activity.

Understanding the “complete picture” of colorectal cancer

After identifying the genes, researchers could then examine which risk-associated genes cause changes in other tissues outside of the colonic mucosa, the tissue lining the colon where cancerous polyps develop. The results showed more than a third of effector genes most likely act outside the colonic mucosa.

The study also found that colorectal cancer risk stems from variation in normal colorectal function on a molecular level: homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions.

The findings reveal that identified genes could affect multiple systems, including cardiovascular, nervous and immune functions. Gut microbiota is also a potential interest area for future research, according to the paper.

The new analysis and continued collaboration is a “springboard” for research efforts that could translate into clinical practice, Dr. Schmit says.

“These discovery efforts help confirm which avenues to explore in colorectal cancer research moving forward,” Dr. Schmit says. “The additional data on biological pathways provide information for discerning genetic risk for colorectal cancer and how these insights could potentially be leveraged for risk-stratified screening and for the development of new prevention and treatment approaches.”

Featured Experts
Stephanie Schmit Headshot
Stephanie
Schmit, PhD, MPH
News Category
news
Related News
Genetic ancestry studies may help improve precision medicine for colorectal cancer Global collaboration reveals genetic factors driving immune response to colorectal cancerImmune responses to colorectal cancer vary with age

Research areas

Genomic Medicine

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute