Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News New Grants Boost Hereditary Breast and Ovarian Cancer Research

12/21/2018

New Grants Boost Hereditary Breast and Ovarian Cancer Research

The grants will focus on continued studies using PARP inhibitors and newly identified DNA repair pathways to increase efficacy of cancer treatments.

Dr. Gong sits in a laboratory with gloves on and samples in front of him

Zihua Gong, MD, PhD, was recently awarded a new grant from the National Cancer Institute, part of the National Institutes of Health, to continue his research related to BRCA1- and BRCA2-associated breast and ovarian cancer.

DNA repair is a normal part of cellular housekeeping but can become dysfunctional in cells that have mutations in BRCA1 or BRCA2 genes. Specifically, BRCA1 or BRCA2 mutations affect homologous recombination repair. Some cancer treatments exploit this characteristic to benefit the patient, the best example of which is PARP inhibitors (PARPi).

PARPi induce cell death in BRCA1 or BRCA2-deficient cancer cells through a phenomenon called "synthetic lethality." Unfortunately, PARPi have only about a 40% response rate in BRCA-mutated breast and ovarian cancers. With his new five-year, $1.8 million award, Dr. Gong hopes to improve PARPi therapy by better understanding the mechanisms of resistance.

In papers published in Nature Communications (2018) and Journal of Biological Chemistry (2017), Dr. Gong and his collaborators identified a previously unrecognized DNA repair pathway that confers PARPi resistance. They showed that the protein 53BP1 (P53-binding protein 1) together with another protein called TIRR (Tudor-interacting repair regulator) mediates cancer cells' PARPi sensitivity. TIRR regulates the expression of and binds with a specific region of 53BP1 to form a protein complex. Both proteins are crucial for the stability of the complex. Without one or the other, therapeutic resistance in BRCA-mutated breast and ovarian cancer cells may result.

Dr. Gong and his team will further investigate the TIRR-53BP1 pathway, looking specifically at how these proteins are up and down regulated. Proteins that inhibit or "turn off" TIRR and/or 53BP1 may be targets for future therapy.

Dr. Gong's research is also funded by the Ovarian Cancer Research Alliance. He was recently awarded a renewal for his Liz Tilberis Early Career Award, which he originally received in 2016. The grant renewal will allow Dr. Gong to further define DNA mismatch repair deficiency, which is the most common cause of hereditary ovarian cancer after BRCA1 and BRCA2 mutations.

Dr. Gong is an Assistant Staff member in the Department of Cancer Biology, Lerner Research Institute. He is also a member of the Research Center for Excellence in Gynecologic Cancer and the Molecular Oncology program of the Case Comprehensive Cancer Center.

Featured Experts
Zihua Gong Headshot
Zihua
Gong, MD, PhD
News Category
Related News
Breastfeeding Cuts Ovarian Cancer Risk in BRCA Mutation CarriersCleveland Clinic researcher receives $2 million to study DNA repair gene in breast cancer resistant to PARP inhibitors

Research areas

Cancer Biology

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute