Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Jonathan Sears Laboratory

❮Ophthalmic Research Jonathan Sears Laboratory
  • Jonathan Sears Laboratory
  • Principal Investigator
  • Research
  • Our Team
  • Publications
  • Careers

Principal Investigator

Jonathan Sears Headshot

Jonathan Sears, MD

Staff
Location: Cleveland Clinic Main Campus

Research

The goal of the Sears lab is to eradicate retinopathy of prematurity (ROP) - the most common form of infant blindness worldwide, accounting for 150,000 blind children annually.

Dr. Sears’ team uses a model of ROP to test the hypothesis that small-molecule activators of hypoxia-inducible factor (HIF) are able to drive retinal development early in life to prevent ROP detachment. They have found a way to prevent this damage to premature organs by pharmaceutically targeting the oxygen sensor in developing tissues to allow oxygen supplementation while protecting these fragile organs.

 


Biography

Jonathan Sears, MD, is Associate Professor of Ophthalmology at the Cole Eye Institute, Cleveland Clinic. He received his undergraduate education at Yale College, graduating cum laude with a BS in chemistry. He continued with medical school at Yale University School of Medicine, where he developed a novel method of screening B-cell epitopes, which was used to help develop the Lyme vaccine. He was a Resident in Ophthalmology at Yale as well, and next completed a two-year surgical fellowship at Emory University, where he developed an interest in pediatric retinal detachment and retinopathy of prematurity (ROP).

Dr. Sears' research interest is in ROP. He uses a mouse model of ROP to test the hypothesis that small-molecule activators of hypoxia-inducible factor are able to drive retinal development early in life to prevent ROP detachment.


Education & Professional Highlights

Education & Fellowships

Fellowship - Emory Eye Clinic
Vitreoretinal Fellowship
Atlanta, GA USA
1998

Residency - Yale-New Haven Hospital
Ophthalmology
New Haven, CT USA
1996

Internship - Yale-New Haven Hospital
Internal Medicine
New Haven, CT USA
1993

Medical Education - Yale University School of Medicine
MD
New Haven, CT USA
1992

Undergraduate - Yale University
Chemistry
New Haven, CT USA
1988

Professional Highlights

  • AAO Achievement Award
  • The Hartwell Foundation Research Fellow
  • Matilda Zeigler Foundation Research Fellow

Certifications

  • Ophthalmology

Awards & Honors

  • Distinction in Chemistry, Department of Chemistry, Yale University, 1988$0$0Cum Laude, Yale University, 1988
  • Yale Medical Student Research Fellowship, sponsored by National Institutes of Health; Howard Hughes Medical Institute, Section of Immunobiology, Yale School of Medicine, 1990-1992
  • Harold J. Lamport Prize, awarded for the most creative biomedical research by a Yale medical student, Department of Biochemistry, Yale School of Medicine, 1992
  • Yale Resident Research Prize, Department of Ophthalmology, 1995 and 1996
  • Heed Ophthalmic Fellowship, in support of clinical research, 1997
  • Emory Medical Care Fellowship, in support of basic science research, Emory University School of Medicine, 1997
  • Association of University Professors of Ophthalmology, Fellow Research Competition, Finalist, 1998
  • Clinical Teacher of the Year Award, Department of Ophthalmology, Emory University School of Medicine, 1998
  • Clinical Investigator Development Award, Cleveland Clinic, 2003
  • Best Doctors in America, 2005-2009
  • Best Doctors in Cleveland, 2005-2009
  • American Academy of Ophthalmology Achievement Award, 2007
  • Editorial Board Member Online News and Education (O.N.E.), 2007
  • Editorial Board Member British Journal of Ophthalmology
  • Best Research, Poster American Academy of Ophthalmology, 2008
  • Strathmore Who's Who 2009

Innovations & Patents

  • Stimulating angiogenesis to prevent ischemic retinopathy

Memberships

  • American Academy of Ophthalmology
  • Association of Research in Vision and Ophthalmology
  • International Congress of Eye Research
  • Association of Pediatric Retinal Surgeons
  • Cleveland Ophthalmic Society
  • Heed Ophthalmic Society

Research

Research

Laboratory goals/projects:

  • Eradicate retinopathy of prematurity by using a proangiogenic strategy during phase one to direct the normal sequential growth of blood vessels.
  • Define the metabolic basis of liver induced retinovascular plasticity.
  • Understand the molecular mechanism of oxygen-induced retinopathy.

The long term goal of this laboratory is to eradicate retinopathy of prematurity (ROP) - the most common form of infant blindness worldwide, accounting for 150,000 blind children annually. Survival after premature birth requires oxygen supplementation that is paradoxically associated with toxicity to premature developing tissues, such as the lung alveoli, nephrons of the kidney, cerebral cortex, and retinal capillaries. The direct relationship of oxygen saturation to disease severity in clinical trials as well as in preclinical investigations has placed the oxygen sensitive transcription factor hypoxia inducible factor (HIF) as a central mediator of retinovascular growth and development. We have definitively demonstrated the safety and efficacy of HIF stabilization in the prevention of oxygen-induced retinopathy (OIR) via HIF prolylhydroxylase inhibition (PHi) in preclinical models in two different species, achieving a protected phenotype for both retina and lung simultaneously by systemic PHi.

Figure 1: Hypoxia inducible factor stabilization prevents oxygen induced vasoobliteration and retinovascular growth attenuation. Panel left is a P12 mouse pup cycled through the oxygen induced retinopathy model, panel right is a littermate that received intraperitoneal small molecule carboxamide injection during hyperoxia. Green marks hypoxia using pimidinzole stain, red marks isolectin-B4 conjugated to fluorophore.

 

Studies:

  1. Synergy between the liver and the retina
    We have extensively tested dozens of small molecules with varying efficacy in stabilizing HIF. Among these, we have determined that carbonyl glycines, hydrazones, and benzolamides are three classes of drugs capable of initiating protection against hyperoxia, but each has varied specificities for liver versus eye versus other organs. For example, dimethyloxaloylglycine is able to target only the liver yet still protects retinovascular tissue whereas other compounds such as Roxadustat work synergistically with both the liver and the retina to create protection against oxygen toxicity. A western blot using both dose and time response did not see changes in retinal HIF concentrations after intraperitoneal injection of DMOG. Instead we saw clear upregulation of HIF-1 in the liver. Using a luciferase-ODD in vivo reporter gene, we clearly found that DMOG targeted only the liver. Surprised by this result, we next conditionally ablated hepatic HIF1A to demonstrate that hepatic HIF-1α, with DMOG as a drug, was necessary and sufficient to transduce protection. We further proved this result by comparing two carbonyl amides- DMOG and Roxadustat using RNA seq. Transcriptional profile was nearly identical between the two drugs in the liver, but they were vastly different in the retina where DMOG had little transcriptional effect that had no overlap with Roxadustat. Finally, using LC-MS 1 and MS 2 we definitively demonstrated that DMOG was so labile as to not survive the first pass in the liver but rather never entered the blood. Roxadustat on the other hand not only entered blood but also entered retina. Therefore Roxadustat could override the hepatic HIF-1α KO and worked synergistically to provide near total protection to the retina. In summary, western blot, luc-ODD reporter gene analysis, RNA-seq, conditional KO experiments, and LC-MS confirmed that indeed a visceral organ could protect a distal capillary bed and provided the notion that low and intermittent dosage of HIF stabilizers might be safe and effective in fragile premature infants in hyperoxia.
  2. Metabolic basis of liver induced retinovascular plasticity Transcriptional and knockout studies of PHi animals described above have determined a unique liver-eye axis that directs “remote” protection against oxygen-induced retinopathy and cardiac ischemia, respectively. We are using targeted and untargeted metabolite profiling to determine how the liver might contribute to protection of a distal capillary bed such as in the retina. After uncovering no protein based/hepatokines induced protection from the liver we used untargeted metabolite profiling to link 1) retinal serine/glycine levels and 2) activation of both the hepatic urea cycle and retinal serine/1-carbon metabolism to hepatic HIF-1 dependent, providing a metabolic phenotype of mice protected by pharmaceutical HIF stabilization against oxygen toxicity.
  3. Metabolic basis of oxygen induced retinopathy
    Using both cells in culture and animal models, we have determined that hyperoxia induces a pronounced shift in metabolism of retinal Müller glia and retina in general. Despite the well known fact that HIF stabilization induces anaerobic glycolysis, we were stunned to find that hyperoxia also restricts flow of glycolytic carbon into the TCA cycle. Instead, Müller cells use glutamine-fueled anaplerosis to generate energy. For every mole of glutamine deamidated to glutamate and further deaminated to α-ketoglutarate, 2 moles of ammonia are released providing the hypothesis that oxygen toxicity to the retina may involve ammonia toxicity and therefore links nitrogen balance through transamination of 2-oxoacids and upregulation of the urea cycle as two metabolic, liver dependent pathways that might explain the synergy of liver/retina by certain classes of HIF stabilizers.

 

Innovations: The concept of pro-angiogenic strategy preventing pathologic angiogenesis is novel. This concept is translational and applies to all forms of ischemic disease, offering the potential to prevent vascular loss before it happens even in the setting of stimuli that creates ischemia, such as in ROP or diabetes.

Our Team

Our Team

Publications

Selected Publications

View publications for Jonathan Sears, MD
(Disclaimer: This search is powered by PubMed, a service of the U.S. National Library of Medicine. PubMed is a third-party website with no affiliation with Cleveland Clinic.)


  1. Singh C, Hoppe G, Tran V, McCollum L, Bolok Y, Song W, Sharma A, Brunengraber H, Sears JE. Serine and 1-carbon metabolism are required for HIF-mediated protection against retinopathy of prematurity. JCI Insight. 2019 Jul 25;4(14).pii: 129398. doi: 10.1172/jci.insight.129398. eCollection 2019 Jul 25. PubMed PMID: 31341109; PubMed Central PMCID: PMC6675544. 
  2. Shukla A, Sonnie C, Worley S, Sharma A, Howard D, Moore J, Rodriguez RJ, Hoppe G, Sears JE. Comparison of Biphasic vs Static Oxygen Saturation Targets Among Infants With Retinopathy of Prematurity. JAMA Ophthalmol. 2019 Apr 1;137(4):417-423. doi: 10.1001/jamaophthalmol.2018.7021. PubMed PMID: 30763441; PubMed Central PMCID: PMC6459099.
  3. Singh C, Sharma A, Hoppe G, Song W, Bolok Y, Sears JE. 3-Hydroxypyruvate Destabilizes Hypoxia Inducible Factor and Induces Angiostasis. Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3440-3448. doi: 10.1167/iovs.18-24120. PubMed PMID: 30025089; PubMed Central PMCID: PMC6733534.
  4. Hoppe G, Yoon S, Gopalan B, Savage AR, Brown R, Case K, Vasanji A, Chan ER, Silver RB, Sears JE. Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity. Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2516-25. doi: 10.1073/pnas.1523005113. Epub 2016 Apr 18. PubMed PMID:27091985; PubMed Central PMCID: PMC4983815.
  5. Hoppe G, Lee TJ, Yoon S, Yu M, Peachey NS, Rayborn M, Zutel MJ, Trichonas G, Au J, Sears JE. Inducing a visceral organ to protect a peripheral capillary bed:stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy. Am J Pathol. 2014 Jun;184(6):1890-9. doi: 10.1016/j.ajpath.2014.02.017. Epub 2014 Apr 13. PubMed PMID: 24731446.

Careers

Careers

Training at Lerner Research Institute

Our education and training programs offer hands-on experience at one of the nationʼs top hospitals. Travel, publish in high impact journals and collaborate with investigators to solve real-world biomedical research questions.

Learn More

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute